
The UCSC Kestrel Application-Unspecific Processor

Richard Hughey Andrea Di Blas
Department of Computer Engineering

University of California, Santa Cruz, CA 95064
�rph, andrea�@soe.ucsc.edu

Abstract

The UCSC Kestrel parallel processor is part of an evolu-
tion from application-specific to specialized to application-
unspecific processing. Kestrel combines an ALU, multiplier,
and local memory, with Systolic Shared Registers for seam-
less merging of communication and computation, and an in-
novative condition stack for rapid conditionals. The result
has been a readily programmable and efficient co-processor
for many applications. Experience with Kestrel indicates
that programmable systolic processing, and its natural com-
bination with the Single Instruction-Multiple Data (SIMD)
parallel architecture, will be an effective design choice for
years to come.

1. Introduction

Biological sequence analysis has long been a standard
problem for application-specific processing. The underly-
ing algorithms are simple and regular, and the amount of
data for analysis is prodigious. University and commercial
projects have tackled this problem since the early days of
VLSI, and many of these approaches are chronicled within
the proceedings of ASAP and its predecessor conferences.

The first such machine was Lopresti’s 1986 Prince-
ton Nucleic Acid Comparator (P-NAC) [19, 20], a single-
purpose systolic array that provided great speedup on its al-
gorithm, and set the stage for the many application-specific
VLSI and FPGA machines that followed.

The second wave included the use of single-chip (MIC-
SMACS) or single-board (Warp) processors to create short
systolic arrays designed for signal processing but suitable
for sequence analysis and other applications [6, 1]. This pe-
riod also introduced three more specialized machines with
moderate to extreme numbers of processing elements (PEs)
on each chip. BISP (16 PEs/chip) and BioSCAN (892
PEs/chip) were application-specific, each suited to one spe-
cific algorithm [2, 25]. The successor to P-NAC and pre-
decessor to Kestrel, the Brown Systolic Array (B-SYS, 47
PEs/chip), incorporated full programmability as an applica-

tion specialized processor [14, 15, 10].
Flexibility and performance continued to increase with

new machines from research projects and industry. The in-
troduction of FPGA-based computing [29, 7] led to their
use as sequence analysis engines [7, 3, 28]. More general
custom VLSI solutions also appeared [27], and the MasPar
mini-supercomputer [21] became a common tool for bioin-
formatics research. The UCSC Kestrel processor moved
from the domain of application-specialized to application-
unspecific, while preserving many features of the B-SYS
SIMD programming model and high computational density.
As a result, it was possible to apply Kestrel to a far broader
selection of algorithms than biological sequence analysis
[11, 12, 9, 23, 5, 4].

In this paper, we discuss the architectural and program-
ming features that lead to Kestrel’s efficiency, moving from
biological sequence analysis, to B-SYS, and then to Kestrel.
Many of the features that made Kestrel successful reflect the
values of good design: simplicity, regularity, and attention
to detail. We conclude with an evaluation of the place of
application-unspecific SIMD processing within the context
of FPGA-based computation, multi-cores, graphics cards,
and application-specific processing.

2. Biological Sequence Analysis

A core problem of bioinformatics is determining the re-
lationship between molecules such as DNA, RNA, and pro-
teins. Ideally, the biologist wishes to discover the physi-
cal relationship between the molecules (do they fold up the
same way? are important residues conserved?), but often
must rely on just the information relationship.

One of the best ways to discover the information rela-
tionship between two sequences � and � is by using one
of a family of related dynamic programming algorithms for
pairwise sequence comparison. For two sequences, the cor-
respondence is determined with a three-state model. The
cost ���� of aligning �� � � � �� to �� � � � �� is calculated by
taking the minimum of three alternatives: (1) the two char-
acters correspond to each other, in which case a match cost
is added to ��������; (2) the �� character is not present in �,

le
ft

 r
eg

is
te

rs

ri
g

h
t

re
g

is
te

rs

ALU
Memory

operands

result

ALU
Memory

operands

result

ri
g

h
t

re
g

is
te

rs

le
ft

 r
eg

is
te

rs

ri
g

h
t

re
g

is
te

rs

le
ft

 r
eg

is
te

rs

PE PE

Figure 1. Systolic Shared Registers

in which case a deletion cost is added to ������; or (3) the
�� character is not present in �, in which case an insertion
cost is added ������ :

���� � ���

��
�

����� ��� � �����match/mutate�
��� ��� � �����delete�
����� � � �����insert��

In practice, biologists use a more complicated form
called the Smith-Waterman algorithm [26], which involves
three interleaved recurrence equations as well as gap ini-
tiation and continuation costs. For the most exacting
searches, bioinformatics practitioners use profile hidden
Markov models (HMMs) [18], which enable comparison
and alignment of a single sequence to a family of sequences.
HMMs also use three interleaved recurrences, but with
higher precision and more complicated arithmetic.

These 	�
�� algorithms have many mappings to linear
arrays. For programmable machines, one of the best map-
pings is to preload one sequence (or the HMM) into the
array, and then move the second sequence through the array
from left to right. The dynamic programming matrix is thus
calculated along diagonals, with ���� calculated at step �� �

in PE� using values just calculated in PE� and PE���.
Because of the vast size of genomic and protein

databases, many universities and companies have worked
to accelerate the sequence comparison algorithms [11]. P-
NAC, the first application-specific solution, placed 30 PEs
on a chip, and implemented the above equation over a four-
character (DNA or RNA) alphabet, with an insert or delete
cost of 1 [19, 20]. This simplicity enabled fast dynamic pro-
gramming, critical for analyzing large sequence databases,
but the lack of support for Smith-Waterman and other algo-
rithms reduced the utility for biologists.

3. The Brown Systolic Array

The goal of the Brown Systolic Array (B-SYS) was to
develop a successor co-processor to P-NAC. Maintaining
simplicity similar to that of P-NAC was critical to ensure
that many PEs could be placed on a single die, enabling
large arrays to be created with only a handful of chips. It
was also important to introduce programmability into the

system. The family of sequence comparison algorithms is
broad, and all or most of the many variations can only be
accelerated on a programmable machine.

The natural choice for B-SYS was a linear systolic array,
the most efficient architecture for sequence analysis. The
linear array can be placed in low pin-count packages and is
tremendously scalable. Of course, the cost of that scalabil-
ity is ever increasing latencies from one end of the array to
the other. As the Kestrel project was to demonstrate, the lin-
ear array is far more flexible as a computation engine than
might be generally thought.

B-SYS introduced the concept of Systolic Shared Regis-
ters (SSRs, Figure 1), in which register banks are shared be-
tween adjacent PEs. The SSRs enable seamless integration
of computation and communication, as a single instruction
can specify that values should be read from the left regis-
ter bank, computed upon, and written to the right register
bank. On a SIMD machine, there will be no bank conflicts
because every PE is reading the same operand registers and
writing the same destination register. The cost of SSRs is
one instruction bit per operand and one extra register bank
per chip to ensure all operands are on chip.

B-SYS (Figure 2) consisted of 10 custom chips, each
with 47 processing elements implemented with 85,000 tran-
sistors [15]. Each processing element had a flexible 8-bit
ALU, 1 mask flag, 7 general-purpose flags, and sixteen 8-
bit registers. A 38-bit instruction is broadcast each clock
cycle, though an earlier design proposed systolic instruc-
tions [14]. Due to the lack of an on-board instruction mem-
ory and controller, the test system only ran at 250 kHz on a
25 MHz host, although the chips could run 10 times faster.

The SSRs enabled implementation of P-NAC’s inner
loop in 6 instructions (6 clock cycles) by, for example,
shifting a character from left to right at the same time as
comparing it to the stored character. As sequence analysis
performance corresponds directly to the length of the in-
ner loop, this was a particularly notable achievement. Even
at 250 kHz, the single-board, 470-PE B-SYS system per-
formed sequence comparison at about the same speed as the
much larger 16 K PE Thinking Machines CM-2 [15]. At the
time, somewhat faster solutions included the first FPGA-
based sequence comparison solution on the Splash machine
with 32 Xilinx chips [7], and two single-purpose VLSI sys-
tems on much larger chips [25, 2].

B-SYS included a unified software environment with
both assembly language and a higher-level language, the
New Systolic Language (NSL). NSL used a stream pro-
gramming model for systolic algorithms, joining the I/O
characteristics of a stream, such as a sequence, with the par-
allel stream variables. The language overloaded C++ oper-
ators for parallel computation, performed rudimentary code
optimization, and managed file I/O between the host and
array or simulator [10].

WEST

REGISTER

BANK

(16 x 8)

F

L

A

G

S

EAST

REGISTER

BANK

(16 x 8)
A B C

R Z

Ck Ck

ALU

Ck Ck

Figure 2. The B-SYS ALU with two flanking Systolic Shared Registers, and the B-SYS chip.

The B-SYS experience provided several lessons:
� Design the full system, not just the chips. The instruc-

tion and data bottlenecks between the host machine
cost a factor of 10 in performance.

� Know your algorithms. B-SYS was designed for DNA
sequence comparison with its four-character alphabet.
Protein sequence comparison involves a 20-character
alphabet, and requires lookup tables in each PE. Al-
though B-SYS’ programmability enabled the cluster-
ing of PEs to implement protein analysis, the cluster-
ing had considerable overhead, retarding performance.

� Build application-specialized processors rather than
application-specific. In addition to one dozen sequence
comparison variations (with inner loops of 6 to 54 in-
structions), B-SYS was also quickly programmed for
classic algorithms like sorting and Horner’s method,
and other problems as well.

� Use simple architectures to enable dense implementa-
tions. The great advantage of the SIMD architecture
is the lack of local instruction sequencing or decod-
ing. With common register addressing and ALU con-
trol, instructions can be latched and decoded once per
physical row of PEs within the chip.

� Include more memory per processing element. A re-
curring theme of first-generation system design. The
SSRs were just 40% of B-SYS PE area, with the ALU,
flags, and (minimal) local control using the rest. This
is an inefficient ratio when grouping is used to expand
memory per logical PE.

4. The UCSC Kestrel Parallel Processor

Kestrel grew from three converging experiences: B-SYS,
the growing bioinformatics efforts at UCSC, and experience
with a MasPar parallel computer [9, 4, 11].

In the 1990s, UCSC pioneered the use of HMMs for
sequence analysis [18]. The technique is now standard
throughout bioinformatics, and is a core component of mul-
tiple alignment and protein structure prediction algorithms
[17]. While scoring against a database of HMMs is similar
to performing Smith-Waterman (though slower due to the
more complicated algorithm), creating an HMM is a time-
consuming iterative process, adding another factor of 50 to

8

8

Array Instruction

Array Immediate

Wired−OR
44

1

Array Instruction
Controller +96

Data In

Data Out

I/O Data8

8

ARRAY CONTROLLER

Systolic Shared Registers

PCI bus

To Host

PE

INPUT QUEUE

OUTPUT QUEUE

511
PE

10
PE

INTERFACE

PCI BUS

MEMORY

INSTRUCTION

Figure 3. Kestrel board architecture

100. For these reasons, we implemented the HMM algo-
rithms on a MasPar parallel computer [13].

The MasPar MP-2 was a 32-bit SIMD machine with lo-
cal memory addressing, a mesh connection, and a global
router [21]. Instructions were microcoded, with basic oper-
ations requiring 4–40, or more, cycles. The system included
32 PEs per chip, and 1K PEs per (large) board, in configu-
rations up to 16K PEs. While the MasPar worked well as
a somewhat specialized supercomputer, it was much larger
and more complicated than necessary, and in some ways in-
efficient, for the family of sequence analysis algorithms.

Kestrel grew out of a desire to support bioinformatics al-
gorithms impossible on B-SYS (with its lack of local mem-
ory) and more efficiently than the MasPar.

Kestrel maintains the linear SSR architecture and the 8-
bit word. We determined that 8 bits continued to be an ap-
propriate mix of flexibility for performing 8, 16, 24, and
32-bit sequence analysis problems, and bitwise parallelism.

Kestrel adds several distinctive features to the B-SYS
linear architecture with shared systolic registers (Figure 4):
� Multiplier. Multiplication was required for implemen-

tation of the HMM algorithms. The multiplier was
key to making Kestrel a general-purpose systolic ar-
ray, and its multiply-accumulate-accumulate operation
more than doubled the speed of 32-bit multiplies.

� Local memory. In addition to the now 32 SSRs, each
PE has 256 bytes of locally-addressed memory. The
local addressing is critical for protein and HMM se-
quence analysis, and of course has many other uses.

� Condition Stack. One of the most innovative aspects of

Result Select

ALU

Comparator

Bit Shifter

256x8-bit
SRAM

Multiplier

MDR

Register

2 read, 1 write

32 by 8-bit

Left

Systolic

Shared

Instruction and 8-bit Immediate3 Register Addresses 3 Register Addresses

Select Operand

Imm
BSMDR

Operand A

FlagsMult Lo

Operand B Operand C
Imm Right

Register

32 by 8-bit

2 read, 1 write

Systolic

Shared

MHI

MHI

BS
MDR

Address
Generator

Figure 4. Kestrel processing element architecture and the Kestrel chip.

Kestrel is each PE’s eight-bit condition stack. General
purpose SIMD processing frequently requires masking
PEs while instructions for a subgroup are broadcast.
The condition stack enables processing of “if. . . else”
clauses and similar constructs concurrently with other
instructions. This enables Kestrel to have the most
rapid PE activity switching of, to our knowledge, any
SIMD array ever designed.

� ALU/Comparator. Geared toward the sequence anal-
ysis applications, Kestrel includes an integrated ALU
and comparator, able to perform single-cycle addition
and minimization. This feature motivated Kestrel’s
three-operand design. While important for Smith-
Waterman performance, this feature is not a require-
ment for general-purpose systolic computing.

� Multiprecision operation. Special care was taken in
the ALU, comparator, and multiplier to ensure efficient
multi-byte operation.

The system architecture includes on-board instruction
memory, an FPGA-based instruction sequencer, data input
and output queues, and clock circuitry. Every 96-bit Kestrel
instruction includes 54 bits of instruction for the Kestrel
PEs, and 42 bits for the instruction sequencer.

In a parallel processor, it is critical to keep the PE ar-
ray busy performing useful calculations. Kestrel achieved
this goal at several levels. The orthogonal instruction set
enables every broadcast instruction to access the memory
with indirect addressing, modify the condition stack, per-
form an ALU/Comparator or Multiplier operation, and, via
the SSRs, move data through the array. The single-clock
execution of an instruction is well-balanced to the broad-
cast time of the instruction and decoded register addresses.
At the same time, the Kestrel controller may be passing data
back and forth to the array, evaluating loop conditions based
on a counter or wired-or, or branching.

These many levels of parallelism enable the core Smith-
Waterman function on 24-bit numbers to be performed in
only 17 instructions. Compared to a 500 MHz UltraSparc-
II, Kestrel achieved speedups of 100 for Smith-Waterman,
44 for Viterbi (add/min) HMM scoring, and 8 for Forward
(mult/add) HMM scoring [4].

Kestrel also does very well against general-purpose,
special-purpose, and FPGA processors. It is difficult to
compare machines across technologies and budgets. Newer
technologies boast higher clock speeds, and larger budgets
lead to larger chips and systems. One way of comparing
sequence analysis performance is in terms of performance
per transistor [4]. Although this does not correct for clock
speed increases between CMOS generations, it does correct
for scaling. Kestrel’s 1997 0.5
m chips at 20 MHz, half
their achievable speed, are 360 times more efficient on pro-
tein sequence analysis than the 6-year-earlier MasPar MP-2
(1992, 1.0
m at 12.5 MHz). Kestrel’s 20 MHz efficiency is
also better than 3 machines from the next two CMOS gen-
erations. These include a very large general-purpose VLSI
processor (Fuzion 150, 2000, 0.25
m, 200 MHz [24]), a
commercial FPGA sequence analysis machine (DeCypher,
2001, 0.18
m? [28]), and a commercial sequence analysis
ASIC (GeneMatcher2, 2001, 0.13
m? 192 MHz, [22]) [4].

The Kestrel project provided several lessons, some of
which echo those learned with the earlier system:
� Spend as much time designing the full system as

the chips. The Kestrel 1 controller, now on board
with the instruction memory, was quickly prototyped
as a single-cycle sequencer. Unfortunately, we did
not originally design a pipelined board and controller,
which would have enabled the Kestrel chips to func-
tion at 40 MHz, twice as fast as the Kestrel 1 system.

� Create new algorithms. One of the most amazing as-
pects of the Kestrel project has been the variety of al-
gorithms, many not obviously parallelizable on a linear
array. While high Kestrel performance was expected
on sequence analysis, Kestrel’s successful application
to graph problems, asynchronous algorithms, floating-
point arithmetic, machine learning, and conformation
analysis was a surprise.

� Compilers are important but hard to do well. For sev-
eral years, we worked to create a full-fledged compiler
for Kestrel. The limited local memory, reducing the
ability to spill and retrieve registers, made the imple-
mentation difficult. Although able to generate code,
we never used it to program the array.

Figure 5. The Kestrel 2 board.

� Include more memory. A recurring theme of second-
generation system design as well. In Kestrel’s case,
the primary memory issues are the need for on-board
memory and a potential increase in the local mem-
ory. Unlike B-SYS, however, conditional execution
and processor grouping is sufficiently efficient so that
this is not a major problem.

5. Application-Unspecific Processing

The most important feature of Kestrel is its flexibility.
We have programmed Kestrel for computational chemistry,
protein conformation analysis, neural networks, floating-
point arithmetic, high-speed division, and a variety of im-
age processing algorithms [4, 23]. We also developed a
paradigm of phased programming for implementing asyn-
chronous algorithms on SIMD arrays [5], and applied these
techniques to graph and neural network problems.

The computational chemistry application was particu-
larly interesting for its use of PE grouping. Blocks of three
PEs perform subproblems (analyzing a specific conforma-
tion of a small molecule). For every eight blocks, we al-
located an additional eight PEs for storing local results, so
that values could be accumulated within the array close to
their calculation rather than being shifted out of the array
after each completed calculation. Similarly, because of the
lack of data memory on the Kestrel board, another 196 of
the 512 PEs were used as staging memory.

Most recently, we created a Kestrel application for the
object recognition and tracking of red blood cells in mi-
croscope images [16]. The application also enhances the
video resolution to be able to accurately measure the cells’
parameters needed for the experiment — area, perimeter,
and sphericity. Finally, the goal was to monitor each cell’s
parameters over time to study the cells’ reactivity. This
was done by tracking all cells across frames in a video
stream. Our implementation has a C front-end interfac-
ing with Kestrel for the most data-intensive processing,
such as bilinear interpolation and bidimensional convolu-
tion. The speedup over the original Matlab-based imple-
mentation brought processing time down from several hours
to a few tens of seconds for a typical video, as was expected.

However, it was still far from real-time processing. We have
shown that with our next processor generation — Kestrel
2 (Figure 5), currently under development — the speedup
would enable almost-real-time processing.

6. Conclusions

Are programmable systolic arrays a technology that
has come and gone? At the time of B-SYS, software-
programmable logic was just starting to become viable for
computing. B-SYS provided a much more readily pro-
grammable environment, and a much higher density of
computation. At that time a revolution in computing ma-
chines was happening: the availability of high-scale integra-
tion that enabled systolic arrays was making possible their
extension to more flexible architectures. The merging of
SIMD parallel architecture with the systolic structures re-
sulted in machines like Kestrel.

Not exactly as power- and area-efficient as systolic ar-
rays or ASICs, they were — and still are — flexible enough
to cover a range of applications. While the optimal map-
ping of general problems on SIMD is still unsolved, we
have seen that it is not difficult to map highly parallel prob-
lems in a way that makes these architectures competitive.

With a single control unit, almost all the power and area
are used for datapath and memory. In this sense, they are
therefore “optimal”. For problems in which the computa-
tion flow is data-independent or with small data-dependent
conditional branches, these architectures are orders of mag-
nitude faster and more efficient than multi-core or multi-
CPU systems. Even when compared with an emerging par-
allel coprocessor, the video card used for general-purpose
processing (GPGPU) [8], SIMD machines still come up
winners in many cases. The graphics pipeline produces a
tremendous amount of horsepower, but it is much less flex-
ible than a fully-programmable SIMD parallel processor.
Moreover, as of now, the programmer has very little con-
trol over the actual degree of parallelism in a video card.

Hardware-programmable logic devices (FPGAs) are in-
teresting in that one supposedly achieves ASIC-like per-
formance with CPU-like programmability. However, FP-
GAs require knowledge of hardware design, and of FPGA-
specific design techniques to achieve performance. For the
same application, an FPGA’s computational power and den-
sity is about one order of magnitude lower than that of an
equivalent ASIC, while its power consumption is an or-
der of magnitude higher. On several emerging applica-
tions that are highly demanding in terms of computation and
highly parallel (e.g. image processing, video processing,
video compression/decompression, etc.), SIMD machines
can achieve ASIC-like performance and efficiency, and still
be employable in a broad range of applications.

The experience with Kestrel, and especially the compar-
ison of its performance with technologies several genera-

tions later, show the tremendous efficiency of a compact and
tightly-designed architecture.

References

��� �� ������	
�� �	 ���
�� ���� �
���	��� �����	���
	���� ��������	�	�
� ��� ����
������� ���� ������

�	
��
�� ����������� ���!� "��� �#$!�
��� %� &�
'�
� (��)�������� *� +�	��,
�� ��� �� -� ���

	������ .�
�
/���� ���
���	�
� ,�/��� ��
��,,
�� 0�
�� 1����
 �	 ���� ���	
�,� ��	�� ��
� �	��� ����� ��/�,
�22 ��3� 4
, �����	
,� &�� -��	� �##�� 0%%% &-�

��� &
���/�� 4	�� .�
�������	
� ���
���	�
� ���)�/��
56	����� ��
� compugen@datasrv.co.il� �##2�

�2� �� "� .��,� "� "����� �� "��)���,� 4� 7��	��
*� (��,��6��/� 8� 8�����,� (� 8������ �� 8������)�
9� ��,�����	���:� "� +��,�� %� ;���� �� -����	:�
"� -���)� ��� ;� (�/��<�
�� =&-& 8�,	��� ����
����� ��
��,,
�� ���� ����� �������� ��� ���
����
��

���
�
�� ������$3 #�� *��� �33��
��� �� "� .��, ��� ;� (�/��<� %>�����	 -0�" ��
/����

���/ �
� �,<����
�
�, �������	�
�,� 0� %� %� -'��	�
:������ �	 ���� ���	
�,� ��	�� ��
� �	��� ����� ��/�,
��$ ��!� 4
, �����	
,� &�� *��< �333� 0%%% &-�

��� +� 9��,
�� "� 4�?������ (� 4�?��/�� ��� +� @���	
��
�0&-��&-� � 14-0 ��
/�����6�� ,<,	
��� �����	���
	���� 0� *� ��&���<� *� ������	��� ��� *� %��� -'��	�
:������� ���	
�,� ���
	��� ����� ��	����	��� ��/�, �2�
��2� +���	����(���� %�/��'

� &��A,� B*� �#$#�

�!� �� 7
)����� �� (
���,� �� 8
�,��� -� 4���,� ;� ����
����� "� -'���<� ��� "� 4
���,	�� .������/ ��� �,��/ �
��/��< �������� ��
/�����6�� �
/�� ����<� �	
��
���
�2����$� $#� *��� �##��

�$� 7+7+=� 7�����������
,� �
���	�	�
� �,��/ /�����
��, ����'���� �		��CC'''�/�/���
�/�

�#� *� "� (��,��6��/� ;� (�/��<� 8� 8�����,� ���
"� -���)� 8�,	���� � ��
/�����6�� ����< �
� ,��
D����� ����<,�,� 0� *� 9
�	�, �	 ���� ���	
�,� ��	�� ��
�

�	��� ����� ��/�, �� �2� 4
, �����	
,� &�� *��<
�##�� 0%%% &-�

��3� ;� (�/��<� +�
/������/ ,<,	
��� ����<,� 0� %� 4��
���
� ���/� ���	
�,� ��	�� ��
� �	��� ����� ��/�,
�32 ��$� 4
, �����	
,� &�� ��/� �##�� 0%%% &-�

���� ;� (�/��<� +������� ,�D����� �
�����,
� ��� ���/��
���	� 0� +� &�����
 �	 ���� ���	
�,� ��	�� ��
� �	���

����� ��/�, ��! �23� 4
, �����	
,� &�� *��< �##��
0%%% &-�

���� ;� (�/��<� +������� ,�D����� �
�����,
� ��� ���/��
���	� ������� ������2!� 2!#� �##��

���� ;� (�/��< ��� �� 8�
/�� (����� ���)
? �
���, �
�
,�D����� ����<,�,� %>	��,�
� ��� ����<,�,
� 	�� 6�,��
��	�
�� ������� ������#� �3!� �##��

��2� ;� (�/��< ��� "� +� 4
���,	�� �����	�����
� � ��
�
/�����6�� ,<,	
��� ����<� 0� 8� .�
���<� -� E� 8��/�
��� %� -'��	:������� ���	
�,� ��	�� ����
 ��
� �	���

���
	��� ������� ��/�, 2� �3� 0%%% &-� ��< �#$$�

���� ;� (�/��< ��� "� +� 4
���,	�� .�-E-� � 2!3���
��,,
�
��
/�����6�� ,<,	
��� ����<� 0� &� ��� ���	
�� ��	��

��
� �	��� �������� ��	�������� ?
���� �� ��/�, �$3
�$�� .
�� ;�	
�� 94� ��/� �##�� &;& +��,,�

���� &� 0
��,���F���		�� 4� ���/� "� "� &���
� +� (��/�
�� "� .��,� ;� (�/��<� ��� 4� +� 4��� ��)����� ���
��
<,�, ���/���	< �, ��������	
� ���� ,����� ;�,��	, ��
�
� �
���
�
/< 	���)��� ��
	
�
�� ���
 �� ����������
���� ����� �33��

��!� 8� 8�����,� ;� 8������� *� "������ *� &�,����
E� �������7�	������� �� "��)���,� ��� ;� (�/��<�
&
�6����/ �
����,	���	���� �
������
/��	�
�� ��� ��'�
�
�� ��	�
�, �
� ��
	��� ,	���	��� ������	�
�� ��	�

����� �
���
��� ����
�	� ��� !���
���� ���-���2#�
2#�� �33��

��$� �� 8�
/�� �� .�
'�� 0� -� ����� 8� -GH
������� ���
"� (��,,���� (����� ���)
? �
���, �� �
���	�	�
���
6�
�
/<� �������	�
�, 	
 ��
	��� �
�����/� "� #	��

��	��� ������3� ����� 9�6� �##2�
��#� ;� *� 4��	
� ��� "� 4
���,	�� � ,<,	
��� ����< �
� �����

,	���/ �
�����,
�� 0� (� 9���,� ���	
�� $%&' �(����

)��� �	�������� 	� *+�� � ��/�, ��� �!�� &
���	��
-������ +��,,� ;
�)?����� �"� �#$��

��3� "� +� 4
���,	�� +�B�&� � ,<,	
��� ����< �
� �
������/
������� ���� ,�D�����,� �	
��
��� �3�!��#$ ##� *��<
�#$!�

���� *� ;� B��)
��,�
�� ��,�/�
� 	�� ��,��� �+��� �
�
,	 �A��	�?� ��,,�?��< �������� �
���	��� 0� ��	��

��#���, ������ $%%-� ��/�, �� �$� 4
, �����	
,�
&�� 9�6� �##3� 0%%% &
���	�� -
���	< +��,,�

���� +������� 0��� 7�����	����� ��
���	 ��	���	����
�		��CC'''����������
�� �33��

���� %� ;��� ��� ;� (�/��<� ���	������,�
� ��?�,�
�
� ��
$�6�	 ��
��,,
�� 0�
� 4��/� *���� ������� ��� B�
�)�
�/�� ���	
�,� ��	�� $.
(���� ��
�� �	
��
�� ���
(�

�
��� ��/�, !2 $�� 0%%% &-� *��< �##!�
��2� .� -�����	� (� -���
���� ��� �� -��������� ��,�

,�?��< �������� ,
��	�
�, �
� �
������� ,�D����� ����<�
,�,� 0� ��
����
�	��� �������� ��� ���
����
�� ��	�����

��� ��
�	���
� ��/�, �$� �#�� 0%%%� ���� �33��
���� ;� 8� -��/�� "� 4� (
A���� -� 7�
���� ��� &�
�

���	�� .�
-&�B� � ��	'
�) ,����6�� �
���	��
	�
��� ��,
���� �
� ,�������/ 6�
,�D����� ��	�6�,�,�
������� �������#� �#�� �##��

����
� 9� -��	� ��� �� -� ��	������ 0���	�I��	�
�

� �
��
� �
������� ,�6,�D�����,� "� #	�� ��	���
�2!��#� �#!� �#$��

��!�
� ��
������G ���
� 9�
��,� �,,�,,���	
�
-��	����	����� ,�D����� ,����� 	

�, ��������	��
�� .�
�������	
�� 9"9� ��� ��,+���
�������� ���
�	�
%��
���� .�
���
���	��, 0�,	�	�	�� �����
��
��,	
7��
�� &����,� (��>	
�� &��6���/�� 9�6� �##!�
�		��CC'''��6������)C����,	�<C"
�����	,C��6�����
	�
�,C���
�	�����

��$�
��� 4
/�� 0��� "��<���� 00 ��
���	 ��	���	����
�		��CC'''�	����
/����
�� �33��

��#� *� %� 1��������� +� .��	��� "� ;
����� �� -����� (� (�

��	�� ��� +� .
������ +�
/�����6�� ��	�?� ���
�
���,� ���
�I/���6�� ,<,	��, �
��
� �/�� ���� ������

*+�� ���
�
�� 2������ �#� �##��

