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Abstract

Architects and industry have been searching for the next durable computational model, the
next step beyond the standard CPU. Graphics co-processors, though ubiquitous and power-
ful, can only be effectively used on a limited range of stream-based applications. The UCSC
Kestrel parallel processor is part of a continuum of parallel processing architectures, stretching
from the application-specific through the application-specialized to the application-unspecific.
Kestrel combines an ALU, multiplier, and local memory, with Systolic Shared Registers for
seamless merging of communication and computation, and an innovative condition stack for
rapid conditionals. The result has been a readily programmable and efficient co-processor for
a wide range of applications, including biological sequence analysis, image processing, and
irregular problems. Experience with Kestrel indicates that programmable systolic processing,
and its natural combination with the Single Instruction-Multiple Data (SIMD) parallel archi-
tecture, is the most powerful, flexible, and power-efficient computational model available for
large group of applications.

Unlike other approaches that try to displace or replace the standard serial processor, our
model recognizes that the expansion in the application landscape and performance require-
ments simply imply that the most efficient solution is the combination of more than one type
of processor. We propose a model in which the CPU and the GPU are complemented by “the
third big chip”, a massively-parallel SIMD processor.

1 Introduction

Array processors and specialized hardware have long been used to accelerate some of the most
computationally demanding algorithms and applications. As the march of technology improves
performance and cost, these specialized processors may become ubiquitous in computing systems.
Floating-point chips made this transition into the central processing unit (CPU) some time ago, and



graphics processing units (GPUs) are working toward this status. Massively-parallel SIMD array
processors are a candidate for a similar transition, in support of another wide range of algorithms
and applications.

In this paper, we discuss the foundations and architecture of the University of California
Santa Cruz (UCSC) Kestrel parallel processor. While the system has proved to be an application-
unspecific parallel processor, its design and philosophy is rooted in the domain of biological se-
quence analysis.

Biological sequence analysis has long been a standard problem for application-specific process-
ing and all other forms of high-performance computing. The underlying algorithms are simple and
regular, and the amount of data for analysis is prodigious. University and commercial projects have
tackled this problem since the early days of VLSI, and many of these approaches are chronicled
within the proceedings of Application-Specific Arrays, Processors and Systems (ASAP) confer-
ence and its predecessors.

The first such machine was Lopresti’s 1986 Princeton Nucleic Acid Comparator (P-NAC) [27,
28], a single-purpose systolic array that provided great speedup on its algorithm, and set the stage
for the many application-specific VLSI and FPGA machines that followed.

The second wave included the use of single-chip (MICSMACS) or single-board (Warp) proces-
sors to create short systolic arrays designed for signal processing but suitable for sequence analysis
and other applications [11, 2]. This period also introduced three more specialized machines with
moderate to extreme numbers of processing elements (PEs) on each chip. BISP (16 PEs/chip) and
BioSCAN (892 PEs/chip) were application-specific, each suited to one specific algorithm [4, 36].
This wave also saw the development of P-NAC’s successor, the Brown Systolic Array (B-SYS,
47 PEs/chip). B-SYS incorporated full programmability as an application specialized processor,
while maintaining a simple processing element design [19, 20, 15].

Flexibility and performance continued to increase with new machines from research projects
and industry. The introduction of FPGA-based computing [43, 12] led to their use as sequence
analysis engines [12, 5, 42, 24]. More general custom VLSI solutions also appeared [41], and the
MasPar mini-supercomputer [31] became a common tool for bioinformatics research. The UCSC
Kestrel architecture sought to build upon these designs while also preserving the B-SYS system’s
simple and efficient SIMD programming model and high computational density. The result was a
movement from the application-specialized B-SYS machine to the application-unspecific Kestrel
machine, able to solve a far broader selection of problems than biological sequence analysis [16,
17, 14, 33, 8, 7].

The following sections describe the architectural and programming features that lead to Kestrel’s
efficiency, moving from biological sequence analysis, to B-SYS, and then to Kestrel. Many of
the features that made Kestrel successful reflect the values of good design: simplicity, regular-
ity, and attention to detail. We conclude with an evaluation of the place of application-unspecific
SIMD processing within the context of FPGA-based computation, multi-cores, graphics cards, and
application-specific processing.
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Figure 1: Dynamic programming sequence comparison, including (a) filling in the matrix and
storing choices, (b) the complete matrix and best paths, and (c) the three optimal alignments.

2 Biological Sequence Analysis

A core problem of bioinformatics is determining the relationship between molecules such as DNA,
RNA, and proteins. Ideally, the biologist wishes to discover the physical relationship between the
molecules (do they fold up the same way? are important residues conserved?), but often must rely
on just the information relationship.

One of the best ways to discover the information relationship between two sequences ������������	��
 and ���� ������� �	� is by using one of a family of related dynamic programming algorithms
for pairwise sequence comparison. For two sequences, the correspondence is determined with a
three-state model. The cost ����� � of aligning ���������	� � to � ������� ��� is calculated by taking the minimum
of three alternatives: (1) the two characters correspond to each other, in which case a match cost is
added to ����� � � ��� � ; (2) the ��� character is not present in � , in which case a deletion cost is added to����� ��� � ; or (3) the � � character is not present in � , in which case an insertion cost is added ����� � � � :

����� ��� �! �"
#$% $& �����

� �'��� �)( ��*,+�-/. match/mutate � �10����/2�����'��� � ( ��*,+�-/. delete 2����� � �'� ( ��*,+�-/. insert 2 �
The complete algorithm consists of calculating all of the ����� � values in a two-dimensional dy-

namic programming matrix starting from �/34� 3 and working toward � 
 � � (Figure 1a, with an insert or
delete cost of 1, match cost of 0, and mutate cost of 2). Each element is calculated based on three
adjacent cells, leading to the three data dependencies. If an alignment is being created, an indicator
of at least one of the minimizing choices should be saved (the lines in Figure 1a). The elements
along any diagonal, such as the last finished one in Figure 1a may be calculated in parallel, since
the data dependencies are only on values in the previous two diagonals. Once the calculation is
complete, the minimizing choices leading back from the final � 
 � � score indicate an optimal align-
ment (the lines in Figure 1b). In this example, there are three optimal alignments, all with a cost
of 3 according to this distance measure. The top alignment in Figure 1c has a deletion, insertion,
and insertion; the middle has an insertion, deletion, and insertion; and the bottom has a mutation
and insertion.
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Figure 2: Hidden Markov model and corresponding alignment of three sequences.

In practice, biologists use a more complicated form called the Smith-Waterman algorithm
[30, 37], which involves three interleaved recurrence equations as well as gap initiation and con-
tinuation costs. The costs are centered around zero, in the example below with negative num-
bers showing probable correspondence. By thresholding the calculation with 0, and finding the
best (most negative) score in the dynamic programming matrix, the highest scoring subsequence-
subsequence region between the two sequences may be found:

������ � � �! �" ��� 0	�  " . �	���
��� ��
� 0	�	���
��� ��
� 0������
�����
� 2 ( cost . � � 0�����2��
������� � �! �" � �����
���� ( � 0������
��� � (�� �

� ���� � � �! �" � � ���� ��
�� ( � 0�� ���� ��
�� (�� � �
For the most exacting searches, bioinformatics practitioners use profile hidden Markov models

(HMMs) [25, 9], which enable comparison and alignment of a single sequence to a family of
sequences. HMMs also use three interleaved recurrences, but with higher precision and more
complicated arithmetic.

������ � � �! �" � �����
��� ��
� (�� ������ �����
�����
� (�� ������ �	���
��� ��
� (�� ������ � ( cost . � � 0�����2�0
������� � �! �" � �����
��� � (�� ��� �� �����
���� (�� ��� �� �	���
��� � (�� ��� �� � ( cost . � � 0�!�2�0
������ � � �! �" � ������ ��
�� (�� ������ ��������
�� (�� ������ �	���� ��
� (�� ������ � ( cost ."! 0�����2 �

A profile HMM (Figure 2) can be thought of as a generative model for a family of aligned se-
quences. Each state of the HMM corresponds to a column of the alignment, and contains a prob-
ability distribution over the amino acids or nucleotides. These probabilities, as well as those for
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Figure 3: Index points calculated at each time step of the parallel dynamic programming algorithm.
The example array, with one fixed sequence and one moving sequence, is shown at time step 4.

insertions and deletions, can be trained from a set of sequences in an iterative process that in-
cludes repeatedly evaluating the HMM version of the dynamic programming calculation. In the
dynamic programming calculation, the HMM replaces one of the sequences so that, for example,
each column of the dynamic programming matrix corresponds to one state in the profile HMM.

An alternate version of this algorithm, the forward algorithm, sums and multiplies probabilities,
rather than maximizing and adding scores. This algorithm produces significantly better results for
sequence alignment, discrimination, and HMM training [25].

These � .�����2 algorithms have many mappings to linear arrays. For programmable machines,
one of the best mappings is to preload one sequence (or the HMM) into the array, and then move
the second sequence (or database) through the array from left to right. The dynamic programming
matrix is thus calculated along diagonals, with �/��� � calculated at step � (�� in PE � using values just
calculated in PE � and the adjacent PE ��� � (Figure 3).

Because of the vast size of genomic and protein databases, many universities and companies
have worked to accelerate the sequence comparison algorithms [16]. P-NAC, the first application-
specific solution, placed 30 PEs on a chip, and implemented the above equation over a four-
character (DNA or RNA) alphabet, with an insert or delete cost of 1 [27, 28]. This simplicity
enabled fast dynamic programming, critical for analyzing large sequence databases, but the lack
of support for Smith-Waterman and other algorithms reduced the utility for biologists.

3 The Brown Systolic Array

The goal of the Brown Systolic Array (B-SYS) was to develop a successor co-processor to P-
NAC. Maintaining simplicity similar to that of P-NAC was critical to ensure that many PEs could
be placed on a single die, enabling large arrays to be created with only a handful of chips. It
was also important to introduce programmability into the system. The family of sequence com-
parison algorithms is broad, and all or most of the many variations can only be accelerated on a
programmable machine.
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// The first opcode (e.g., xorABC) determines the result
// (stored in LF) based on two inputs (L2, R2) and the carry.
// The second opcode (e.g., Zsub) determines the operation of the
// carry chain, as well as the input and output flag registers.
// F7 is preset to 0, and F6 is preset to 1. The next iteration
// of this loop begins by comparing previous costs stored in L4
// and R4, placing the result in R2 rather than R4.

// Compare two previous costs (L2, R2)
xorABC L2 R2 LF Zsub F7 F1

// But do the comparison mod 256
fnA LF LF LF Zmsb F1 F1

// Select the minimum, place in LF
selectABonC L2 R2 LF Zconst F1 F1

// Add 1, the insertion or deletion cost, to LF
xorAC LF LF LF Zadda F6 F1

// Compare the characters in L1 and R0, passing the L1
// character to the right, feeding a character to the array

fnA L1 R0 R1 matchAB F7 F2 load(*s++)
// If the characters matched, use L4 as the cost,
// otherwise use LF. Store result in R4

selectABonC L4 LF R4 Zconst F2 F2

Figure 7: B-SYS code for calculating edit distance mod-256 (as implemented in hardware by
P-NAC).

The natural choice for B-SYS was a linear systolic array, the most efficient architecture for
sequence analysis. The linear array can be placed in low pin-count packages and is tremendously
scalable. Of course, the cost of that scalability is ever increasing latencies from one end of the
array to the other. As the Kestrel project was to demonstrate, the linear array is far more flexible
as a computation engine than might be generally thought.

B-SYS introduced the concept of Systolic Shared Registers (SSRs, Figure 4), in which register
banks are shared between adjacent PEs. The SSRs enable seamless integration of computation and
communication, as a single instruction can specify that values should be read from the left register
bank, computed upon, and written to the right register bank. On a SIMD machine, there will be
no bank conflicts because every PE is reading the same operand registers and writing the same
destination register. The cost of SSRs is one instruction bit per operand and one extra register bank
per chip to ensure all operands are on chip.

B-SYS (Figures 5 and 6) consisted of 10 custom chips, each with 47 processing elements
implemented with 85,000 transistors [20]. Each processing element had a flexible 8-bit arithmetic-
logic unit (ALU) loosely based on the OM-1 [29], 1 mask flag, 7 general-purpose flags, and sixteen
8-bit registers. A 38-bit instruction is broadcast each clock cycle. (The first design presented to
ASAP proposed systolic, rather than broadcast, instructions [19].) Due to the lack of an on-board
instruction memory and controller, the test system only ran at 250 kHz on a 25 MHz host, although
the chips could run 10 times faster.

The SSRs enabled implementation of P-NAC’s inner loop in 6 instructions (6 clock cycles) by,
for example, shifting a character from left to right at the same time as comparing it to the stored
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character (Figure 7). With a non-programmable architecture, P-NAC implemented this loop in
two clock phases. On a programmable machine without SSRs, two or more additional instructions
would be necesary to explicitly move data between processing elements prior to each inner loop
calculation. As sequence analysis performance corresponds directly to the length of the inner
loop, this was a particularly notable achievement. Even at 250 kHz, the single-board, 470-PE B-
SYS system performed sequence comparison at about the same speed as the much larger 16 K PE
Thinking Machines CM-2 [20]. At the time, somewhat faster solutions included the first FPGA-
based sequence comparison solution on the Splash machine with 32 Xilinx chips [12], and two
single-purpose VLSI systems on much larger chips [36, 4].

B-SYS included a unified software environment with both assembly language and a higher-
level language, the New Systolic Language (NSL). NSL used a stream programming model for
systolic algorithms, joining the I/O characteristics of a stream, such as a sequence, with the parallel
stream variables. The language overloaded C++ operators for parallel computation, performed
rudimentary code optimization, and managed file I/O between the host and array or simulator [15].

The B-SYS experience provided several lessons:

� Design the full system, not just the chips. The instruction and data bottlenecks between the
host machine cost a factor of 10 in performance.

� Know your algorithms. B-SYS was designed for DNA sequence comparison with its four-
character alphabet. Protein sequence comparison involves a 20-character alphabet, and re-
quires lookup tables in each PE. Although B-SYS’ programmability enabled the clustering
of PEs to implement protein analysis, the clustering had considerable overhead, retarding
performance.

� Build application-specialized processors rather than application-specific. In addition to one
dozen sequence comparison variations (with inner loops of 6 to 54 instructions), B-SYS was
also quickly programmed for classic algorithms such as sorting and Horner’s method, and
other problems as well.

� Use simple architectures to enable dense implementations. The great advantage of the SIMD
architecture is the lack of local instruction sequencing or decoding. With common register
addressing and ALU control, instructions can be latched and decoded once per physical row
of PEs within the chip.

� Include more memory per processing element. A recurring theme of first-generation system
design. The SSRs were just 40% of B-SYS PE area, with the ALU, flags, and (minimal)
local control using the rest. This is an inefficient ratio when grouping is used to expand
memory per logical PE.

4 The UCSC Kestrel Parallel Processor

Kestrel grew from three converging experiences: B-SYS, the growing bioinformatics efforts at
the University of California Santa Cruz (UCSC), and experience with a MasPar parallel computer
[14, 7, 16].
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Figure 9: The Kestrel chip with 64 processing elements.
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In the 1990s, UCSC pioneered the use of HMMs for sequence analysis [25]. The technique
is now standard throughout bioinformatics, and is a core component of multiple alignment and
protein structure prediction algorithms [23]. While scoring against a database of HMMs is similar
to performing Smith-Waterman (though slower due to the more complicated algorithm), creating
an HMM is a time-consuming iterative process, adding another factor of 50 to 100 [39]. For these
reasons, we implemented the HMM algorithms on a MasPar parallel computer [18].

The MasPar MP-2 was a 32-bit SIMD machine with local memory addressing, a mesh connec-
tion, and a global router [31]. Instructions were microcoded, with basic operations requiring 4–40,
or more, cycles. The system included 32 PEs per chip, and 1K PEs per (large) board, in configura-
tions up to 16K PEs. While the MasPar worked well as a somewhat specialized supercomputer, it
was much larger and more complicated than necessary, and in some ways inefficient, for the family
of sequence analysis algorithms.

Kestrel grew out of a desire to support bioinformatics algorithms impossible on B-SYS (with
its lack of local memory) and more efficiently than the MasPar.

Kestrel (Figures 8, 9 , and 10) maintains the linear Systolic Shared Register (SSR) architecture
and the 8-bit word of B-SYS. We determined that 8 bits continued to be an appropriate mix of
flexibility for performing 8, 16, 24, and 32-bit sequence analysis problems, and bitwise parallelism.

Conditional processing is a primary limitation of the SIMD architecture. Because the same
instruction is broadcast to all processing elements, “if. . . else” clauses require processing element
masking. Many SIMD machines (MPP, B-SYS, CM-1, MasPar, Kestrel) have 1-bit mask flag reg-
isters to indicate whether or not the PE should execute conditional instructions. While an “else”
may be performed in one instruction (negating the flag), other common operations for conditional
execution, especially nested conditionals, requires storage in PE memory and additional instruc-
tions.

One of the most innovative aspects of Kestrel is each PE’s eight-bit condition stack. The con-
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Function Use
Clear Erase all conditions, activate all PEs.
Push Begin an if clause, adding a condition to the stack.
AND TOS Replace the top of stack (TOS, the bit shifter’s msb) with the

AND of the TOS and another bit. Evaluate the second part of an
if (X | Y) clause. The AND is used to evaluate OR clauses
because bits are asserted low in the bit shifter.

OR TOS Evaluate the second part of an if (X & Y) clause.
Complement TOS Invert the current condition for an else clause.
Pop Complete a condition, restoring a previous state.
Pop and Complement TOS Remove one layer of nesting and start an else clause, as in if

(X)
�
if (Y)

�����
else.

Replace TOS Complete one condition and start another at the same nesting level,
as in if (X)

���
if (Y).

Store Save current state. Free bit shifter for other tasks. Can be used with
Load, Clear, and Set to process more than 8 nested conditions.

Load Restore a previous state.

Table 1: Condition stack functions associated with processing nested conditionals [6].

dition stack is an 8-bit hardware stack that also supports parallel reads and writes. The condition
stack performs the basic bit operations necessary for conditional processing in parallel with other
PE operations, requiring zero additional instructions. Beyond pushing, popping, and complement-
ing bits, it can combine conditions with logical operations and perform such operations as ‘pop
and compliment’, used when exiting a nested ‘if’ into an ‘else’ clause (Table 1). The condition
stack gives Kestrel the most rapid PE activity switching of, to our knowledge, any SIMD array
ever designed.

In addition to the condition stack, Kestrel adds several distinctive features to the B-SYS linear
architecture with shared systolic registers (Figure 8):

� Multiplier. Multiplication was required for implementation of the HMM algorithms. The
multiplier was key to making Kestrel a general-purpose systolic array, and its multiply-
accumulate-accumulate operation more than doubled the speed of 32-bit multiplies.

� Local memory. In addition to the now 32 SSRs, each PE has 256 bytes of locally-addressed
memory. The local addressing is critical for protein and HMM sequence analysis, and of
course has many other uses.

� ALU/Comparator. Geared toward the sequence analysis applications, Kestrel includes an
integrated ALU and comparator, able to perform single-cycle addition and minimization.
This feature motivated Kestrel’s three-operand design. While important for Smith-Waterman
performance, this feature is not a requirement for general-purpose systolic computing.

� Multiprecision operation. Special care was taken in the ALU, comparator, and multiplier to
ensure efficient multi-byte operation.

11



;; Insert <-- max (Insert+continue,MGC)
add R$Inslo, R$Inslo, $CONTL
smaxc add mp R$Inshi, R$Inshi, $CONTH, R$MGChi
smaxc cmp R$Inslo, R$Inslo, R$MGClo

;; Delete <-- max (Delete+continue,MGC)
add R$Dello, L$Dello, $CONTL
smaxc add mp R$Delhi, L$Delhi, $CONTH, R$MGChi
smaxc cmp R$Dello, R$Dello, R$MGClo

;; Shift the sliding sequence;
;; read a new value from the queue;
;; Lookup the character cost in SRAM
move R$Seq, L$Seq, qtoarr, read(L$Seq)

;; Match <-- max(MDI+charcost,0)
;; Zero-threshold for local scoring
;; of Smith & Waterman
add L$TMPlo, L$MDIlo, mdr
smaxc add mp L$TMPhi, L$MDIhi, smdr, #0
smaxc cmp L$TMPlo, L$TMPlo, #0

;; Add the gap cost to the Match cost for
;; Delete and Insert calculations
add R$MGClo, L$TMPlo, $GAP_LO
add R$MGChi, L$TMPhi, $GAP_HI

;; Store the best score so
smaxc L$score_hi, L$score_hi, L$TMPhi
smaxc cmp L$score_lo, L$score_lo, L$TMPlo

;; MDI <-- max (Match, Insert, Delete)
;; for future Match calculation.
;; Branch to start of nested loop
smaxc R$MDIhi, L$TMPhi, R$Inshi
smaxc cmp R$MDIlo, L$TMPlo, R$Inslo
smaxc R$MDIhi, R$MDIhi, R$Delhi
smaxc cmp R$MDIlo, R$MDIlo, R$Dello, endLoop

;; mp = multiprecision ALU op
;; cmp = topdown multiprecision comparator op
;; smdr = sign extension of the 1-byte MDR
;; smaxc= signed maximum with operand C

Figure 11: Core assembly code for 16-bit Kestrel Smith-Waterman.

The system architecture (Figure 10) includes an array controller implemented on a field-programmable
gate array (FPGA), on-board instruction memory, data input and output queues, a PCI bus inter-
face chip, and clock circuitry (not shown). Every 96-bit Kestrel instruction includes 54 bits of
instruction for the Kestrel PEs, and 42 bits for the array controller.

In a parallel processor, it is critical to keep the PE array busy performing useful calculations.
Kestrel achieved this goal at several levels. The orthogonal instruction set enables every broadcast
instruction to access the memory with indirect addressing, modify the condition stack, perform an
ALU/Comparator or Multiplier operation, and, via the SSRs, move data through the array. The
single-clock execution of an instruction is well-balanced to the broadcast time of the instruction
and decoded register addresses. At the same time, the Kestrel controller may be passing data back
and forth to the array, evaluating loop conditions based on a counter or wired-or, or branching.

These many levels of parallelism enable the core Smith-Waterman function on 16-bit numbers
to be performed in only 18 instructions or 18 clock cycles (Figure 11). Again, ample use is made
of the zero-instruction communication provided by the Systolic Shared Registers. Compared to
a 500 MHz UltraSparc-II, Kestrel achieved speedups of 100 for Smith-Waterman, 44 for Viterbi
(add/min) HMM scoring, and 8 for Forward (mult/add) HMM scoring [7].

Kestrel also does very well against general-purpose, special-purpose, and FPGA processors.
It is difficult to compare machines across technologies and budgets. Newer technologies boast
higher clock speeds, and larger budgets lead to larger chips and systems. One way of compar-
ing sequence analysis performance is in terms of performance per transistor [7]. Although this
does not correct for clock speed increases between CMOS generations, it does correct for scaling.
Kestrel’s 1997 0.5 � m chips at 20 MHz, half their achievable speed, are 360 times more efficient
on protein sequence analysis than the 6-year-earlier MasPar MP-2 (1992, 1.0 � m at 12.5 MHz).
Kestrel’s 20 MHz efficiency is also better than 3 machines from the next two CMOS generations.
These include a very large general-purpose VLSI processor (Fuzion 150, 2000, 0.25 � m, 200 MHz
[35]), a commercial FPGA sequence analysis machine (DeCypher, 2001, 0.18 � m? [42]), and a
commercial sequence analysis ASIC (GeneMatcher2, 2001, 0.13 � m? 192 MHz, [32]) [7].

The Kestrel project provided several lessons, some of which echo those learned with the earlier
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Figure 12: Grouping processing elements in the chemistry application.

system:

� Spend as much time designing the full system as the chips. The Kestrel 1 controller, now
on board with the instruction memory, was quickly prototyped as a single-cycle sequencer.
Unfortunately, we did not originally design a pipelined board and controller, which would
have enabled the Kestrel chips to function at 40 MHz, twice as fast as the Kestrel 1 system.

� Create new algorithms. One of the most amazing aspects of the Kestrel project has been
the variety of algorithms, many not obviously parallelizable on a linear array. While high
Kestrel performance was expected on sequence analysis, Kestrel’s successful application to
graph problems, asynchronous algorithms, floating-point arithmetic, machine learning, and
conformation analysis was a surprise.

� Compilers are important but hard to do well. For several years, we worked to create a full-
fledged compiler for Kestrel. The limited local memory, reducing the ability to spill and
retrieve registers, made the implementation difficult. Although able to generate code, we
never used it to program the array.

� Include more memory. A recurring theme of second-generation system design as well. In
Kestrel’s case, the primary memory issues are the need for on-board memory and a potential
increase in the local memory. Unlike B-SYS, however, conditional execution and processor
grouping is sufficiently efficient so that this is not a major problem.

5 Application-Unspecific Processing

The most important feature of Kestrel is its flexibility. We have programmed Kestrel for com-
putational chemistry, protein conformation analysis, neural networks, floating-point arithmetic,
high-speed division, and a variety of image processing algorithms [7, 33].

The computational chemistry application is particularly interesting for its use of PE grouping.
In this problem, Kestrel analyzes all possible conformations of a small molecule to create a 14 kbit
geometric fingerprint [33]. Each fingerprint bit indicates the presence or absence of a particular set
of three atom types forming a triangle with specific length ranges between the atoms. The parallel
algorithm includes loading conformations into the array, computing pairwise distances within each
conformation, and using sets of three pairwise distances and three atom types to determine which
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Figure 13: Four steps in our cell-tracking program (shown on a small portion of the actual im-
age) and a summary of the performance with the parallel fraction of the computation, which also
includes the bi-linear interpolation.

fingerprint bits to assert. The results for the many conformations are combined, and the final
fingerprint is sent back to the host.

In the Kestrel mapping, blocks of three PEs are used to process each conformation. For every
eight blocks, we allocated an additional eight PEs for storing local copies of the developing finger-
print (the 8 PEs have a total of 16 kbit of local memory), so that values could be accumulated within
the array close to their calculation rather than being shifted out of the array after each completed
calculation. Similarly, because of the lack of data memory on the Kestrel board, another 196 of
the 512 PEs were used as auxiliary memory, storing atom type and conformation data as groups of
conformations are processed (Figure 12). This application highlights that small and simple SIMD
PEs can be effectively grouped to tackle large problems.

Most recently, we created a Kestrel application for the object recognition and tracking of red
blood cells in microscope images (Figure 13) [22]. The application also enhances the video res-
olution to be able to accurately measure the cells’ parameters needed for the experiment — area,
perimeter, and sphericity. Finally, the goal was to monitor each cell’s parameters over time to
study the cells’ reactivity. This was done by tracking all cells across frames in a video stream. Our
implementation has a C front-end interfacing with Kestrel for the most data-intensive processing.
These include a bi-linear interpolation to increase the resolution of the image, and subsequently
performs a bi-dimensional convolution using a cell image as the kernel. Both these operations are
computationally- and data-intensive, as well as embarrassingly parallel, and map efficiently on our
architecture, while on a standard CPU they stress the cache performance.

Our speedup over the original Matlab-based implementation brought processing time down
from several hours to a few tens of seconds for a typical video, as was expected. However, it was
still far from real-time processing. We have shown that with our next processor board generation
with twice as many of the original 64-PE chips and a pipelined controller enabling a doubling of
clock speed, Kestrel 2 (Figure 14), the speedup would enable almost-real-time processing [22].
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Figure 14: The Kestrel 2 board.

We also developed a paradigm of phased programming for implementing asynchronous al-
gorithms on SIMD arrays [8]. This programming model, the SIMD Phase Programming Model
(SPPM), provides a clear methodology to implement asynchronous, irregular problems on SIMD
architectures, extending the conventional application range of the architecture. SPPM is suitable
for assembler or compiler support, though in the latter case, on Kestrel, would run into the same
register allocation issues discussed above. This method starts from a sequential implementation of
the algorithm to parallelize, and has five steps:

1. Problem partitioning and data flow definition, which includes all four steps of Foster’s design
methodology: Partitioning, communication, agglomeration, and mapping [10].

2. Control-flow transformation, in which the control flow of the partitioned program is ex-
plicitly modified to implement all flow control structures using only conditional branching
(if/else) and unconditional jumps (goto).

3. Single-PE sequential program, in which the program is mapped to the specific parallel ar-
chitecture, using one of the PEs as a serial processor.

4. Phase identification and code parallelization, in which the code is partitioned into phases,
that will be atomic groups of instructions executed by PEs in the active set only. Phases
themselves are designed in such a way that they automatically define the proper active set.

5. Optimization, to reduce the parallelism overhead by maximizing the active fraction by dy-
namically adjusting the schedule in which the phases are broadcast.

Figure 15 illustrates the process in step 4, where phases are identified in the flow-chart reflect-
ing the algorithm produced at step 3, and the code is instrumented to handle parallel execution.

In case studies implemented with this programming model, we have found that the PE effi-
ciency remains fairly high (above 40 or 50%) even for hundreds or thousands of PEs. Of course,
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do (OP A)

T

else     PE_phase := 3
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do (OP C)

else     PE_phase := 1
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END
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do (OP B)

PE_phase := 1
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Figure 15: From a generic flow-chart (left) to the SIMD-parallelized code according to the SIMD
Phase Programming Model.

this efficiency is strongly dependent on the nature of the problem and on the actual implementation.
Overall, our programming model and results reinforce that the SIMD linear array is a powerful and
efficient coprocessor with a wide range of applications.

6 The Third Big Chip

Currently, most computers are built around two major computational centers: The CPU and the
Graphics Processing Unit, GPU. The CPU is responsible for all computations except those related
to image-generation, which are performed by the GPU. If one considers the space of all possible
applications, image generation is a narrow niche. However, the computational intensity of this
particular application and its popularity, such as in video games, has justified the extra component.

Contrary to intuition, the space of popular applications expands with the increased computing
power available, rather than saturating. Therefore today we see an increased need for computa-
tional power to enable new and emerging applications. As an example, the new video compression
standards MPEG-4.10 (also known as H.264) or Microsoft’s VC-1 require computational power
that cannot be found in any ordinary PC or workstation to produce high-definition compression in
real time [34, 26]. However, there is a growing demand for this functionality in different spaces,
from video-over-IP to high-definition video conferencing.

Of course, both the CPU and the GPU keep improving their performance at an amazing rate,
and in the case of the GPU, also the flexibility and programmability. An approach generically
called “GPGPU” for General-Purpose GPU studies how to use the impressive computational power
of the GPU to solve general problems. This approach, once only the hobby of a few specialized
hackers, has been finding more and more interest and support with the GPU manufacturers. Specif-
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Figure 16: Application domains of the three big chips

ically, nVidia has been very active in this field, and has recently released the most flexible graphics
architecture to date, the G80, together with a GPU-specific programming language, CUDA [40].

Even with this added flexibility, it appears that the combination of CPU and GPU does not
efficiently cover the space of new massively-parallel applications. The GPU focus on floating-
point-intensive streaming applications can lead to inefficiencies and unrealized performance for
integer applications, in particular database and data management operations. This is why several
companies are now exploring architectural solutions most suitable to become the so-called “third
big chip”, to efficiently complement the current two (Fig. 16).

We believe that the massive-core SIMD architecture is the optimal candidate for the job. Its
architecture is completely different from that of the CPU and of the GPU, and therefore its perfor-
mance peaks at completely different coordinates in the application space. The SIMD architecture
has a minimal amount of control, making it power-optimal in the best case, which reduces the
electrical cost per computation when compared with other solutions even at the same performance
level. Also, managing the design complexity of the linear SIMD architecture is straightforward,
and this architecture is also the simplest to scale at the software level.

We are currently designing a next generation of our architecture, called the Pelikan processor.
In this architecture, we combine the efficient design of RISC CPUs with the best features of linear
SIMD arrays based on our experience with Kestrel. We expect the result to be an outstanding
machine with exceptional performance overall, as well as per square nm and per Watt.

7 Conclusions

Are programmable systolic arrays a technology that has come and gone? At the time of B-SYS,
software-programmable logic was just starting to become viable for computing. B-SYS provided a
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much more readily programmable environment, and a much higher density of computation. At that
time a revolution in computing machines was happening: the availability of high-scale integration
that enabled systolic arrays was making possible their extension to more flexible architectures.
The merging of SIMD parallel architecture with the systolic structures resulted in machines like
Kestrel.

Not exactly as power- and area-efficient as systolic arrays or ASICs, SIMD processors were and
still are flexible enough to cover a range of applications. While the optimal mapping of general
problems on SIMD is still unsolved, we have seen that it is not difficult to map highly parallel
problems in a way that makes these architectures competitive. With a single control unit, almost all
the power and area are used for datapath and memory. In this sense, they are therefore “optimal”.
For problems in which the computation flow is data-independent or with small data-dependent
conditional branches, these architectures are orders of magnitude faster and more efficient than
multi-core or multi-CPU systems. Even when compared with an emerging parallel coprocessor,
the video card used for general-purpose processing (GPGPU) [13], SIMD machines still come up
winners in many cases. The graphics pipeline produces a tremendous amount of horsepower, but
it is much less flexible than a fully-programmable SIMD parallel processor. Moreover, as of now,
the programmer has very little control over the actual degree of parallelism in a video card.

Hardware-programmable logic devices (FPGAs) are interesting in that one supposedly achieves
ASIC-like performance with CPU-like programmability. However, FPGAs require knowledge
of hardware design, and of FPGA-specific design techniques to achieve performance. And even
with state-of-the-art FPGA-accelerated computers [38], supported by expert FPGA designers and
expert supercomputing applications developers, real FPGA-based systems in practice only achieve
modest speedups. For example, one recent design reports achieving a speedup of three compared
to microprocessor runtime on a high-performance workstation powered by an add-on processor
with two FPGAs for a biomolecular simulation [1]. Other critical factors include power efficiency
and silicon efficiency. Roughly speaking, for the same application, an FPGA’s computational
power and density is about one order of magnitude lower than that of an equivalent ASIC [7], and,
due to the larger number of transistors per computation and interconnection overhead, the power
consumption can be an order of magnitude higher.

Finally, the industry trend toward multicores confirm, in a way, that SIMD processors have a
place in the computational landscape. In fact, the symmetric multicore architecture has shown the
same limitations of networks of workstations and in general Multiple Instruction-Multiple Data
(MIMD) systems. In most high-performance applications, MIMD systems run in Single Program-
Multiple Data (SPMD) mode, with each processor running the same program, wasting a consid-
erable amount of power to replicate the common control flow. While the advantage of having a
homogeneous architecture is still considerable, several companies are experimenting with an evo-
lution of this simple multi-core architecture — the asymmetric multicore architecture. Perhaps the
most famous example today is the IBM Cell [21], which combines a powerful, complex PowerPC
core with 8 simpler and more efficient Synergistic Processing Elements. Another example is the
architecture by Cradle Technology, that combines two blocks, each with four general-purpose pro-
cessors and eight DSPs. The idea is clearly to exploit the good serial performance of few complex
cores, and the high parallel performance of several simple cores [3]. Taking this approach to its
limit generates what we see as the next computational model: a CPU (and possibly a GPU) with a
fully-programmable, massive-core SIMD coprocessor.
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The experience with Kestrel shows the tremendous efficiency of such a model.
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